宽带
首页  >  宽带  >  宽带要闻

T比特传输解密

2015-07-10  来源:中国信息产业网  作者:

DWDM光传输系统其单通道传输速率经历了从2.5Gbit/s->10Gbit/s->40Gbit/s的提升,正在实现从40Gbit/s->100Gbit/s的跨越,并酝酿下一代的超100Gbit/s光传输系统。

超100Gbit/s光传输意在可用频带资源不变的情况下进一步提升单根光纤的传输容量,其关键在于提高频谱资源的利用率和频谱效率。超100Gbit/s光传输将继承100Gbit/s光传输系统的设计思想,采用偏振复用、多级调制提高频谱效率,采用OFDM技术规避目前光电子器件带宽和开关速度的限制,采用数字相干接收提高接收机灵敏度和信道均衡能力。关于下一代超100Gbit/s的传输速率目前有两种提法,分别为400Gbit/s和1Tbit/s。

Tbit光传输实现的关键技术

烽火通信Tbit传输系统系统工程师冯勇华介绍说:“对于光传输系统而言,光纤损耗窗口所导致的可用带宽限制和光传输通道光器件级联所引起的窄带滤波效应要求光传输的频谱效率最大化;光传输通道的非线性效应要求光传输功率的效率最大化。光纤色散以及光电器件水平对光传输符号基带带宽亦有限制。这就要求高容量光传输系统充分利用光信号可调制维度(幅度、相位、偏振态)来承载数据以提高频谱效率,采用OFDM技术提高频谱利用率并降低符号传输的波特率以抑制色散的影响、减小对光、电器件带宽的要求,采用数字相干接收技术提高接收机的灵敏度和信道均衡能力,采用更高增益的纠错编码提高系统的健壮性。“

1.多维度调制技术

如图1所示,多维度、多进制调制技术可在一个符号上承载多个比特信息,能够有效提高频谱效率,降低符号发送的波特率,减小基带带宽及与之相关的色度色散和偏振模色散,减小对传输通道和光电器件带宽的要求。充分利用两线性正交偏振态可有效复用的特性可进一步降低数据传输的波特率,提高频谱效率和通道损伤容忍能力。但多级调制会减小星座图上符号之间的最小间距,降低OSNR灵敏度以及非线性容忍能力,要求在频谱效率和接收灵敏度以及OSNR要求之间进行权衡。

图1. 多维度多级调制星座图

2.正交频分复用技术

时间周期为T且中心频率间隔为1/T整数倍的脉冲信号在时域和频域具有正交性。将传统的宽带光载波通道细分为多个相互正交的窄带子载波分别进行编码调制后复用传输,以减小和消除宽带载波调制所固有的色度色散和偏振模色散,抑制同一载波通道上前后符号间的干扰。

图2. 相干接收光正交频分复用系统结构

OFDM具有如下优势:①子频带割分降低了系统对光电器件的带宽要求,增强了光电器件和模块选择的灵活性;②导频副载波便于信道和相位估计,③提高了频谱资源利用率,具有很好的可扩展性。

关键词:T比特 烽火 光传输